Matematika

Pertanyaan

turunan fungsi menggunakan aturan rantai :
1. f(t) = √sin ([tex] \frac{1-t}{1+t} [/tex])
2. y = f(x) = sin (cos√x)

pakai cara yaaa
+50 point

1 Jawaban

  • 1) v = (1 - t)/(1 + t) = a/b
    a = 1 - t => a' = -1
    b = 1 + t => b' = 1
    dv/dt = (a' b - b' a)/b^2 = (-1 (1 + t) - 1(1 - t))/(1 + t)^2
    dv/dt = (-1 - t - 1 + t)/(1 + t)^2 = -2/(1 + t)^2

    u = sin v
    du/dv = cos v = cos (1 - t)/(1 + t)

    f(t) = √u = u^1/2
    df(t)/du = 1/2 u^-1/2 = 1/2 . 1/u^1/2 = 1/2 . 1/√u = 1/(2√u)
    df(t)/du = 1/(2√(sin v)) = 1/(2√(sin (1 - t)/(1 + t))

    f(t) = √(sin (1 - t)/(1 + t))
    df(t)/dt = df(t)/du . du/dv . dv/dt
    = 1/(2√(sin (1 - t)/(1 + t)) . cos (1 - t)/(1 + t) . -2/(1 + t)^2
    = [-cos (1 - t)/(1 + t)] / (1 + t)^2√(sin (1 - t)/(1 + t))

    2) y = sin (cos √x)
    v = √x = x^1/2
    dv/dx = 1/2 x^-1/2 = 1/2 . 1/x^1/2 = 1/2 . 1/√x = 1/(2√x)

    u = cos v
    du/dv = - sin v = - sin √x

    y = sin u
    dy/du = cos u = cos (cos v) = cos (cos √x)

    dy/dx = dy/du . du/dv . dv/dx
    = cos (cos √x) . - sin √x . 1/(2√x)
    = -1/(2√x) . sin √x . cos (cos √x)

Pertanyaan Lainnya